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INTEGRATION OF MACHINE LEARNING-BASED PREDICTION 
AND DYNAMIC QOS OPTIMIZATION INTO ADAPTIVE VONR 
SCHEDULING IN 5G STANDALONE NETWORKS:  
A SIMULATION-BASED APPROACH

The rapid development of fifth-generation networks in the Standalone (5G SA) variant puts forward new 
requirements for the implementation of voice services, in particular Voice over New Radio (VoNR), which 
are critically dependent on stable quality of service (QoS) indicators. Traditional radio resource scheduling 
algorithms, such as Round Robin and Proportional Fairness, are based mainly on instantaneous channel 
characteristics (SNR, CQI), without taking into account historical quality metrics such as jitter, delay, or packet 
loss, which leads to unstable operation of voice services in a variable radio environment. This is especially 
relevant for 5G SA, where there is no dependency on LTE infrastructure and all responsibility for QoS is placed 
on the new architecture.

The paper proposes a simulation-based approach to building an adaptive scheduler for VoNR that combines 
the prediction of modulation parameters using machine learning algorithms with dynamic optimization of MCS, 
QCI, and power consumption. Based on a decision tree ensemble model, the optimal modulation is estimated 
based on the current SNR value and the aggregated QoS performance of previous intervals. The simulation 
architecture implemented in MATLAB provides for modeling radio channel changes using Markov chains with 
three discrete states (Good, Average, Bad), which allows to reproduce realistic scenarios of mobile network 
operation. The adaptive scheduler integrates several levels of decision-making: ML model forecast, heuristic 
correction in favorable radio conditions, and dynamic class of service (QCI) control, which ensures that 
transmission parameters are matched to current and predicted channel conditions. The power consumption is 
also taken into account as a full-fledged QoS metric, which reduces the load on user equipment at high signal 
levels. A comparative analysis of three schedulers (Round Robin, Proportional Fairness, Adaptive) is carried 
out according to the key indicators: delay, jitter, packet loss, power consumption, throughput, and MOS.

The results of the study confirm that the adaptive ML scheduler demonstrates significantly better voice 
connection quality, especially in unstable radio channel conditions. The proposed approach minimizes losses 
and delays, stabilizes the MOS, and improves the power efficiency of the system without compromising the 
quality of service. Thus, the integration of machine learning into the decision-making loop for VoNR in 5G SA 
is a promising area that can be expanded by implementing multi-user scenarios, more complex ML models, and 
practical testing in real network infrastructure.

Key words: VoNR, 5G Standalone, QoS, adaptive scheduling, machine learning, modulation, SNR, CQI, 
QCI, MCS, Round Robin, Proportional Fairness, Adaptive, ML scheduler, simulation modeling, MATLAB, 
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Formulation of the problem. The appearance 
of the 5G Standalone (SA) architecture has opened 
up opportunities for the full implementation of 
new types of services, among which VoNR (Voice 
over New Radio) connections play a key role. As 
opposed to transitional solutions, such as VoLTE or 
EPS fallback, the implementation of voice services 
in a fully independent 5G network requires solving 
a number of new challenges, including dynamic 
management of radio resources in a variable channel 

environment, ensuring a stable quality of service 
(QoS), and optimizing latency, loss, and power 
consumption.

In traditional scheduling schemes, such as Round 
Robin or Proportional Fairness, decisions about 
modulation parameters or class of service (QCI) 
are made primarily based on instantaneous channel 
characteristics, with little regard for historical trends 
or service context. This limits the system’s ability to 
respond effectively to the dynamics of the network 
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environment, which is especially critical for voice 
connections that are sensitive to jitter, loss, and 
latency. In 5G SA-type networks, these limitations 
become even more critical, as the system must 
independently provide a full service stack without 
relying on LTE infrastructure. In addition, promising 
approaches to resource management involve the 
integration of intelligent mechanisms, such as 
machine learning, but their real-time application 
to voice traffic is still not well studied. This creates 
the necessity to develop adaptive schedulers capable 
of predicting changes in radio conditions and 
QoS parameters, changing modulation and MCS 
in accordance with the foreseen conditions, and 
reducing power consumption without compromising 
service quality. Solving these problems is a key step 
towards stable and efficient VoNR implementation in 
real 5G Standalone networks.

Analysis of recent research and publications. 
Ensuring quality of service (QoS) for voice 
services in fifth-generation (5G) mobile networks, 
in particular in the Standalone architecture, is 
the subject of active research in the scientific 
community. Particular attention is paid to the 
challenges associated with radio channel instability, 
including changes in signal-to-noise ratio (SNR), the 
impact of latency, jitter, packet loss, and the need to 
adapt modulation in real time. Works [1, 5] consider 
the importance of a guaranteed level of QoS for 
voice connections in VoNR networks and justify the 
necessity of adaptive radio resource management. 
Researchers in [7, 8] draw attention to the potential 
of machine learning in managing service parameters, 
in particular, the ability to predict modulation 
and CQI to improve the resilience of voice traffic to 
channel changes. Paper [13] proposes an ML-based 
scheduling approach that demonstrates the potential 
to reduce delays, but its adaptability is limited by the 
lack of integration with quality of service (QCI) and 
power management. In [3, 14], an overview of the 
QoS subsystem in the 5G architecture is provided, 
including QCI, MCS, CQI, and resource assignment 
mechanisms. At the same time, these works focus 
mainly on stationary traffic or lack the time aspect of 
radio channel changes, which limits the relevance of 
the approaches to real-world scenarios.

Some studies [9, 11] cover radio channel 
modeling using stochastic models, in particular 
Markov chains, but they are rarely combined 
with intelligent schedulers or do not cover the 
full set of QoS metrics critical for VoNR. Some 
publications  [2, 12] offer separate heuristics for 
changing modulation when SNR changes, but 

without reference to the historical behavior of 
service parameters or machine learning.

A general review of published works leads to 
the conclusion that existing studies do not offer a 
comprehensive model that simultaneously takes 
into account QoS dynamics, modulation prediction, 
MCS and QCI adaptation, power consumption, and 
stochastic channel variability. This integration is the 
subject of this paper.

The purpose of this study is to investigate 
the possibilities of integrating predictive machine 
learning models into the process of adaptive 
radio resource planning for voice services in  5G 
Standalone networks. The main focus is on 
modeling and evaluating the effectiveness of an 
intelligent scheduler that changes modulation, 
MCS, QCI, and power consumption in accordance 
with dynamic radio conditions and quality of 
service (QoS) parameters. The work is aimed at 
building a full-fledged simulation model using 
stochastic approaches to radio channel modeling 
and implementing an ML module as an element of 
decision-making. The study involves a comparative 
analysis of traditional and adaptive schedulers to 
determine their ability to provide a stable voice 
connection under variable SNR conditions. This 
approach allows us to identify the advantages 
of adaptive architecture, reduce terminal power 
consumption, and improve user experience. In 
addition, the study provides a basis for further 
developments in the area of implementing intelligent 
schedulers in real telecommunications environments.

Summary of the main research material. 
In  modern fifth-generation (5G) mobile networks, 
in particular in the Standalone (SA) variant, 
the provision of voice services via Voice over 
New  Radio (VoNR) technology is a priority area 
of development for both operators and network 
equipment manufacturers. The main challenge of 
implementing VoNR is to ensure a guaranteed level 
of quality of service (QoS) in a changing radio 
channel, which is especially typical for mobile 
scenarios with dynamically changing signal-to-noise 
ratio (SNR), interference, signal fading and other 
factors inherent in the frequency bands in which NR 
operates. Traditional approaches to radio resource 
allocation in mobile communications systems are 
usually focused on fixed Channel Quality Indicator 
(CQI) thresholds, which are directly related to 
the choice of Modulation and Coding Scheme 
(MCS). In such models, which are used in standard 
schedulers, the level of service for voice traffic is 
determined purely by the current channel state, 
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without taking into account the historical behaviour 
of QoS parameters such as latency, jitter, packet loss, 
or power consumption. This creates significant risks 
for voice quality, as short-term channel degradations 
can lead to excessive degradation of end-user 
perceived parameters, such as MOS (Mean Opinion 
Score). In the case of voice services, such instability 
leads to signal distortion, dialogue breaks, lag, and 
other undesirable effects [1]. In addition, standard 
scheduling schemes are not optimised for power 
consumption, which is a critical factor in mobile 
terminals and IoT devices that may also use voice 
services in 5G.

In response to these challenges, this study 
modelled and implemented a new type of 
scheduler that dynamically adapts the transmission 
parameters of voice traffic depending on both 
instantaneous and aggregated QoS characteristics. 
The approach is based on the use of machine 
learning to predict the optimal modulation based 
on a combination of factors, and combining this 
prediction with heuristic logic that takes into 
account the physical parameters of the radio 
channel, service history, and current SNR level. 
Additionally, the MCS and QCI adaptation system 
is implemented, which allows not only to select 
the optimal modulation, but also to ensure the 
appropriate quality of service in accordance with 
the service category. In order to reproduce realistic 
scenarios of the adaptive scheduler, a full-fledged 
MATLAB simulation model was built, including 
the time generation of radio conditions, the use 
of a Markov model for the transition between 
radio channel states (Good, Average, Bad), the 
calculation of the full range of QoS metrics and 
the accounting of power consumption at each 
moment. This approach allows for comparisons 
between scheduling algorithms with simple 
resource allocation without QoS (Round Robin), 
QoS-oriented scheduling algorithms (Proportional 
Fairness), and the new ML-adaptive approach 
under the same network environment (Adaptive).

Thus, the proposed problem statement provides 
for a transition from static and isolated modulation 
adaptation mechanisms to a comprehensive and 
integrated approach, in which the decision to change 
transmission parameters is based on a multifactorial 
analysis of the QoS history, the current channel 
state, and the forecast model. A special feature of 
the approach is the inclusion of power consumption 
as a QoS indicator, which significantly extends 
the application scope of the scheduler in energy-
sensitive scenarios.

Despite significant progress in the 
implementation of voice services in fifth-generation 
mobile networks, in particular, based on the VoNR 
architecture, there is still no single effective 
approach to managing radio interface resources 
that would ensure stable voice quality in a variable 
radio channel. Most implemented systems are 
based on fixed or linear-adaptive algorithms that 
rely exclusively on instantaneous CQI or SNR 
values. This ignores time dependencies, cumulative 
dynamics of QoS parameters, as well as factors 
associated with changes in the network environment, 
such as latency instability, increasing losses or 
accumulated jitter.

In addition, modern schedulers usually do not 
take into account the historical behaviour of traffic 
and are unable to identify situations where the 
quality of service deteriorates gradually rather than 
instantly. Such scenarios are especially critical for 
voice services. The user’s perceived quality is not 
a linear function of just one parameter. Instead, it 
is formed as an integral effect of delays, losses, 
and jitter accumulated over several seconds. This 
necessitates the creation of a planning mechanism 
that is capable of multidimensional channel 
state estimation and adaptation of the relevant 
transmission parameters based on a combination of 
instantaneous and average QoS values.

An extra problem that needs to be solved is 
the lack of the ability of the scheduler to perform 
a coordinated adaptation of several parameters at 
once – modulation, coding scheme (MCS), class 
of service (QCI), and terminal power consumption 
mode – based on a holistic predictive analysis. 
In most practical implementations, there is 
fragmentation: for example, adaptation is performed 
only for MCS, while the choice of QCI or power 
mode remains static, or vice versa – the type of 
service is fixedly linked to the class of service without 
taking into account the actual state of the network. 
This limits the effectiveness of such solutions in real 
time. From a technical point of view, an important 
component of the problem is the lack of models that 
simultaneously take into account the variability of 
the radio channel over time, the dependence between 
successive QoS measurements, the stochastic nature 
of losses and latency, and the nonlinear dependence 
of MOS on input factors. Creating a simulation 
environment that reproduces such characteristics is a 
difficult but necessary condition for reliable testing of 
any next-generation scheduler. Thus, the study aims 
to address the identified problems by building an 
integrated model that allows:
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–	 to combine the prediction of service 
parameters using machine learning with classical 
resource planning schemes;

–	 to take into account the time dynamics and 
historical values of QoS metrics (latency, jitter, 
losses) when making decisions on the choice of 
modulation and coding scheme (MCS);

–	 to perform automated selection of class of 
service (QCI) based on predicted radio conditions 
and service requirements;

–	 to dynamically adjust the power consumption 
of the terminal in accordance with the channel 
conditions and the selected modulation, which 
minimises power consumption without degradation 
of voice quality;

–	 to ensure the maintenance of a high average 
voice quality score (MOS) by adapting key 
transmission parameters in real time;

–	 to simulate smooth changes in channel 
conditions using a stochastic model of transitions 
between states (Markov chain), which approximates 
the modelling conditions to real-world scenarios.

Elements of scientific novelty.
The architecture for modelling and adaptive 

scheduling of voice services in a 5G SA network 
proposed in this study forms a number of significant 
scientific and technical innovations that distinguish 
it from existing approaches. The main elements 
of scientific novelty are both the simulation 
architecture itself and the introduction of innovative 
data-driven decision-making mechanisms. First  of 
all, an original model of an adaptive resource 
scheduler was developed that combines analytical 
mechanisms for determining modulation with 
predictive algorithms based on machine learning 
methods. The peculiarity of the implementation 
is that the model takes into account not only the 
current SNR value but also the aggregated values 
of QoS metrics for previous periods of time when 
making decisions. This allows to take into account 
the inertia in the behaviour of the network channel 
and identify trends of deterioration or improvement 
of service that are not available for classical instant 
schedulers.

Another key contribution is the integration of 
modulation type prediction (16-QAM, 64-QAM, 
256-QAM) using an ML model based on four 
parameters: SNR, Latency, Jitter and Packet Loss. 
The use of an ensemble of models based on a 
decision tree allowed us to achieve high accuracy 
while maintaining the interpretability of decisions. 
In addition, the adaptive scheduler implements the 
logic of heuristic correction of ML-model solutions 

based on SNR thresholds, which avoids unjustified 
modulation reductions in favourable radio 
conditions.

For the first time, the dynamic interdependence 
between the predicted modulation, the chosen 
coding scheme (MCS) and the class of service 
(QCI) is implemented. In classical implementations, 
such parameters are fixed or statically set based 
on the traffic profile, while in the proposed 
model it changes according to the predicted 
channel conditions. Thus, the scheduler is able 
to automatically lower the priority of service in 
unfavourable conditions, or, conversely, increase 
the class of service when the QoS improves, which 
allows for more efficient use of resources and 
increased stability of voice traffic service.

It is worth noting the extension of the standard 
QoS model by including power consumption as 
a full-fledged metric for voice traffic. The model 
reduces power consumption at high SNR values and 
selects efficient modulation, which is relevant both 
for reducing the load on terminals and improving the 
efficiency of the network infrastructure as a whole.

Another element of scientific novelty is the 
construction of a time simulation using a Markov 
chain to model the smooth transition between the 
three states of the radio channel (Good, Average, 
Bad). Such a model allows reproducing signal 
quality fluctuations over time with greater accuracy 
than using independent Gaussian noise or fixed 
scenarios. This, in turn, ensures higher simulation 
reliability and allows us to evaluate the behavior of 
schedulers in realistic variable channel conditions. 
In addition, a new weighting formula for calculating 
MOS was proposed that takes into account the 
influence of three key factors – latency, loss, and 
jitter – with experimentally validated weighting 
factors. This approach makes it possible to simulate 
not only the technical efficiency of transmission, but 
also the subjective quality of voice perception by the 
user.

Overall, this study has created a holistic 
simulation platform for testing adaptive voice 
service scheduling algorithms in 5G SA that 
combines ML methods, simulation modeling, and 
engineering principles of modulation adaptation, 
providing a high degree of reliability and practical 
value of the results.

Simulation architecture in MATLAB.
To reproduce the behavior of an adaptive voice 

packet transmission scheduler in a 5G SA network, 
taking into account radio channel dynamics, 
variability of QoS metrics, and the impact of 
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machine learning, a full-fledged simulation model 
was implemented in MATLAB. The model structure 
includes several interconnected components: a 
dynamic SNR(t) generator, a stochastic model 
of radio channel states, a transmission planning 
subsystem with options for implementing various 
algorithms (Round Robin, Proportional Fairness, 
Adaptive), a QoS evaluation module, and a 
mechanism for integrating with the ML model [2]. 
The simulation takes place in the time dimension 
with a fixed step, which ensures that the input 
parameters change at each moment of time. The 
presented implementation uses a simulation horizon 
of 100 seconds with a sampling interval of 1 second 
(Fig. 1). For each moment of time t, a signal-to-
noise ratio (SNR) value is generated that models the 
variability of radio conditions in a real environment. 
For this purpose, a combined model is used, which 
includes a sinusoidal component (simulating 
periodic changes in conditions due to mobility) 
and additive Gaussian noise, which models random 
disturbances. Additionally, SNR values are limited 
to a physically acceptable range (5–35 dB), which 
prevents the generation of unrealistic extremes.

After generating the SNR(t) value, each of the 
schedulers performs the corresponding voice traffic 
transmission scheduling procedure. In the case of 
classical approaches (Round Robin, Proportional 
Fairness), the algorithm uses fixed thresholds to 
determine the modulation and MCS, depending 
on the CQI, which is derived from the SNR value 
using a piecewise linear relationship. In the case 
of an adaptive scheduler, on the contrary, the input 
vector consists of the current SNR value and the 
aggregated values of QoS indicators for the previous 
three time intervals (latency, jitter, loss), after which 
it goes through a normalization procedure and is 
fed to the input of a machine model built on the 
basis of an ensemble of decision trees. The output 
of the machine model integrated into the adaptive 
scheduler is a categorical variable that determines 

the appropriate level of modulation in the current 
radio service conditions. The decision is based on 
four key input parameters: the current SNR value 
and the averaged values of latency, jitter, and packet 
loss over the last three simulation intervals. This 
approach allows taking into account not only the 
instantaneous state of the radio channel, but also 
the effects of inertial degradation or stabilization 
of the quality of service. However, given the 
potential errors of ML forecasting in conditions 
close to the limit values or when observing non-
standard combinations of parameters, the model 
implements a heuristic procedure for adjusting 
the output. In particular, in cases where the SNR 
level exceeds  22 dB, the predicted modulation 
is checked for feasibility in terms of using the 
available radio resource. If the predictive model 
makes a decision in favor of a lower modulation 
(e.g.,  16-QAM), which potentially limits the 
bandwidth in a high-quality channel, a forced uprate 
to 64-QAM is performed. Similarly, when the SNR 
is above 26 dB, an automatic transition to 256-QAM 
is allowed, even in the case of an indecisive forecast. 
This heuristic allows balancing between the caution 
of the ML model and the aggressive use of favorable 
conditions, which, in turn, ensures an increase in 
spectral efficiency without a significant increase in 
losses or a decrease in MOS [2]. The use of heuristic 
correction is especially justified in cases of short-
term improvement of transmission conditions, since 
machine models that operate on average QoS values 
may demonstrate an inertial delay in response, 
which requires proactive intervention at the level of 
scheduler logic.

For each transmission session in the simulation, a 
network state is generated based on a Markov chain 
with three states (Good, Average, Bad), each of 
which has fixed parameters of latency, jitter, losses, 
and power consumption (Fig. 2). The  transition 
matrix is designed to mimic the inertia of the 
channels: a state is highly likely to persist, but there 

 

 
  Fig. 1. A snippet of the code for generating the dynamic signal SNR(t) in MATLAB. The value is formed  

on the basis of the baseline, sinusoidal variation, and normal noise, which together model periodic changes  
and random fluctuations in the radio channel

 

 
  

Fig. 2. A fragment of the implementation of a stochastic transition between network states based on a Markov 
chain. For the currentState, the next state is selected according to the corresponding row in the transitionMatrix 

by the multivariate binomial distribution method
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are also non-zero chances of transitioning to a 
neighboring state (for example, from Good to 
Average or vice versa), which corresponds to the 
behavior of a mobile user moving through coverage 
cells or changing the orientation of the device.

The QoS analysis module calculates the main 
metrics for each scheduler: average latency, average 
jitter, Packet loss rate, throughput, round trip delay 
(RTD), and average power consumption [3]. Based 
on these metrics, an integral quality indicator is 
calculated – MOS (Mean Opinion Score), which 
is modified to meet the requirements for voice 
services: the formula takes into account the weighted 
impact of latency, loss and jitter, with thresholds that 
meet current ITU-T recommendations.

The simulation results are accumulated in the 
data structure for each scheduler separately, which 
allows for a full-fledged comparative analysis of 
the performance of Round Robin, Proportional 
Fairness, and the proposed ML-based adaptive 
solution. In the final part of the simulation, a set of 
visualizations (graphs) is generated that demonstrate 
the dynamics of QoS metrics over time, as well 
as the behavior of parameters that directly depend 
on the scheduler – modulation, MCS, CQI, QCI. 
The resulting simulation is suitable for multifactorial 
analysis of schedulers’ behavior under various radio 
channel conditions. Its structure allows to trace 
the impact of scheduling algorithms on key voice 
traffic quality indicators, including latency, jitter, 
losses, power consumption, and MOS, with high 
resolution, and ensures the reliability of conclusions 
about the effectiveness of the implemented adaptive 
mechanisms.

Description of schedulers.
The simulation model implements three types of 

schedulers that differ in their decision-making logic 
for selecting modulation, Modulation and Coding 
Scheme (MCS), and service quality for voice 
traffic  [4]. The choice of these three algorithms is 
driven by the need to compare the proposed solution 
with basic and common strategies used in mobile 
communication systems.

The first type – Round Robin – is a basic 
scheduler that implements the simple principle of 
uniform distribution of radio resources among users 
without taking into account any quality of service 
parameters. In the implementation of this simulation, 
modulation and MCS are set according to fixed 
CQI thresholds that directly depend on the current 
SNR value. For example, if CQI < 7, 16-QAM is 
assigned, if 7 ≤ CQI < 12, 64-QAM is assigned, and 
if CQI ≥ 12, 256-QAM is assigned. This  scheme 

provides technical fairness, but completely 
ignores changes in latency, loss, or jitter, making it 
unsuitable for QoS-critical scenarios, such as voice 
traffic [2].

The second scheduler, Proportional Fairness 
(PF), is a QoS-oriented scheduling algorithm that 
attempts to balance efficiency and fairness based 
on the ratio of current to average user throughput. 
Modulation is determined based on CQI, but with a 
more flexible consideration of channel conditions. 
Although PF does not directly take into account 
latency or loss, it responds to the overall radio 
channel condition and is able to partially adapt to 
unstable conditions. However, its adaptation is not 
QoS-directed in the narrow sense – the scheduler 
does not adjust transmission parameters to ensure 
stable MOS or minimize jitter [5].

The third proposed scheduler, Adaptive, 
integrates a machine learning algorithm, heuristic 
logic, and a power adaptation mechanism. 
Unlike previous solutions, it is based not only on 
instantaneous channel parameters but also on the 
history of QoS metrics, including average latency, 
jitter, and percentage of losses. The input vector 
is fed to an ML model that determines the most 
appropriate modulation for the current conditions. 
Additionally, heuristic rules are implemented to 
increase modulation at high SNR regardless of the 
ML prediction, ensuring more aggressive resource 
utilization in favorable conditions [2].

In addition to modulation adaptation, the 
scheduler dynamically selects the appropriate 
Modulation and Coding Scheme (MCS) and binds 
it to the QoS Class Identifier (QCI) to ensure 
compliance with voice traffic service standards 
(e.g.,  QCI = 1 or QCI = 5) [6]. The model also 
provides a mechanism for reducing latency and 
losses by adjusting transmission parameters, which 
allows achieving higher MOS values compared to 
the baseline schemes. Thus, the proposed adaptive 
scheduler implements a multilevel decision-making 
strategy: ML-based forecasting, heuristic correction, 
dynamic assignment of transmission parameters, 
and power consumption optimization. This ensures 
flexibility, resistance to unstable channels, and 
improved QoS compared to traditional designs. 
Table 1 shows the comparative characteristics of the 
implemented schedulers.

Fig. 3 shows the change in modulation (16-QAM, 
64-QAM, 256-QAM) over time for each of the three 
implemented schedulers. The Round Robin scheduler 
demonstrates a fixed modulation selection logic 
based solely on the current CQI value. As a result, 
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the graph shows a relatively stable distribution of 
modulations, without a flexible response to changes 
in transmission conditions. While Proportional 
Fairness utilizes CQI and incorporates the ratio 
between current and average throughput to enable 
partial modulation adaptation, it does not consider 
QoS metrics such as latency or loss. By comparison, 
the proposed adaptive scheduler performs more 
dynamic modulation changes during the simulation. 
This is due to the fact that the modulation selection 
decision is based not only on SNR, but also on 
aggregated QoS metrics and machine model 
predictions. In combination with additional heuristic 
conditions, the adaptive scheduler is able to switch 
to higher modulation schemes in favorable radio 
conditions, even if the model predicted a more 
conservative value [7].

Thus, the graph clearly demonstrates that 
the adaptive design responds more sensitively 
to variations in the network environment than 

basic algorithms, which is a crucial advantage for 
QoS‑sensitive traffic such as VoNR.

Machine Learning model integration for 
adaptive scheduling.

This study presents a machine learning model 
designed to support the development of an adaptive 
scheduler that accounts for the current channel 
state and QoS parameters by predicting the optimal 
modulation level (16-QAM, 64-QAM, or 256‑QAM) 
under varying network conditions. The  model is 
built on the basis of a training dataset generated by 
preliminary modeling of system behavior in different 
radio conditions and QoS parameters. A total of 2000 
synthetic examples were collected, each containing 
input values: SNR, Latency, Jitter, and Packet Loss. 
These parameters act as a feature vector. 

The training set contains a total of 2000 examples 
evenly distributed among the three main modulation 
classes: 16-QAM, 64-QAM, and 256-QAM. Table 2 
summarizes the main statistical characteristics of 

Table 1
Comparative characteristics of the implemented schedulers

Scheduler Main control 
parameter

Modulation 
dialing logic

Reaction to 
QoS metrics

QCI 
adaptation Power consumption

Round Robin CQI Fixed thresholds None Static Static
Proportional 
Fairness

CQI +  
Throughput ratio Dynamic thresholds None Static Static

Adaptive (ML) SNR + QoS + ML Forecast + 
heuristics

Includes 3 
previous ones Dynamic Adaptive



 
  

Fig. 3. Modulation change (16-QAM, 64-QAM, 256-QAM) over time for three schedulers
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the parameters used as input features, including 
average, minimum, and maximum values. The  data 
encompasses a representative range of VoNR 
conditions and contains sufficient variability to 
enable the training of a machine learning model with 
high generalizability.

The target variable is represented as a categorical 
class – a type of modulation encoded in the form 
of three numerical labels. Before starting training, 
the input data were normalized to a single scale 
space, which avoids the overwhelming influence 
of individual parameters on the training process. 
To increase the reliability of the model, the sample was 
divided into training (80%) and test (20%) parts using 
stratified hold-out. As a basic classifier, an ensemble 
model of the Bagged Trees (Bootstrap Aggregation) 
type was chosen, which combines several decision 
trees into a stable model with high generalizability. 
The implementation used 200 trees, each of which 
is trained on a random subset of the training data. 
The depth of the tree is limited by setting the 
MaxNumSplits parameter to prevent overtraining  [9]. 
This choice is due to the model’s suitability for 
integration into a simulation environment, where it 
demonstrates a sufficient level of classification ability 
to predict modulation in a variable radio channel 
(Fig.  4). Although the absolute value of accuracy on 
the test set is limited, it is sufficient to support real-
time decision-making in combination with heuristic 
rules and dynamic QoS context.

Fig. 5 shows the results of testing the model in 
the form of a mixing matrix. As can be seen from the 
graph, the model demonstrates the largest number 
of correct classifications for the 256-QAM class, 
but at the same time, there is a systemic bias – the 
model tends to assign higher modulation schemes 
even when the true value is lower. This is due to the 
peculiarities of the training set and the sensitivity 
of SNR as a feature. Such behavior is typical for 
models relying on aggregated QoS metrics without 
access to extended historical data. To address this, 
additional heuristic constraints were introduced 
during integration into the simulator to promote 
decision stability and mitigate potential losses. Thus, 
even with imperfect classification accuracy, the 
model is effectively used as a preliminary estimator 
in the adaptive scheduler loop.

After the training procedure, the model was 
saved as a .mat file and integrated into the general 
simulator as part of the adaptive scheduler. During 
the simulation process, at each step, the adaptive 
scheduler generates a vector of input parameters 
(SNR, average latency, jitter, and losses for the 
previous three time intervals), normalizes it, and 
feeds it to the model input. The resulting predicted 
modulation value is used as a key parameter 
for further selection of MCS, QCI, and power 
consumption [10]. To increase the reliability of the 
decisions made, as well as to avoid underestimation 
of predictions in favorable channel conditions, 

Table 2
Input Feature Statistics – VoNR ML Training Set

Average Average 
deviation Min 25% Median 75% Max

SNR 19.959 8.766 5.097 12.141 20.221 27.52 34.992
CQI 7.883 4.296 1.0 4.0 8.0 12.0 15.0
MCS 19.127 5.556 10.0 14.0 19.0 24.0 28.0
Latency 9.012 3.087 3.415 6.46 8.926 11.489 14.997
Jitter 1.366 0.583 0.349 0.863 1.358 1.845 2.499
Loss 1.61 0.913 0.078 0.858 1.59 2.34 3.499
Throughput 154.02 53.02 60.02 108.275 153.568 197.578 264.306
MOS 4.04 0.235 3.603 3.847 4.033 4.234 4.5
Power 1.039 0.429 0.3 0.665 1.041 1.399 1.798

 

 
  Fig. 4. Implementation of training a classification model of the Bagged Trees  

type in MATLAB using 200 decision trees and a depth limit (MaxNumSplits)



Том 36 (75) № 3 202550

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

an additional heuristic correction module is 
implemented: at SNR  > 22 dB, the system allows 
increasing the predicted modulation by one 
level, and at SNR > 26 dB – assigning 256-QAM 
regardless of the model’s prediction, if it does not 
contradict QoS indicators. This approach allows 
balancing between the caution of the ML solution 
and the efficient use of resources in a high-quality 
radio channel. Thus, the implemented module is 
not limited to forecasting, but acts as an adaptive 
decision-making subsystem integrated into the 
radio resource management loop in a variable radio 
environment.

Markov model of channel states.
A stochastic model based on Markov chains with 

discrete states was used to model changes in the 
radio environment in real time. This approach allows 
to realistically reproduce the behavior of the radio 
channel in conditions of user mobility, changes in 
network load, and stochastic fluctuations caused by 
interference and multipath signal propagation  [11]. 
In contrast to sinusoidal or static SNR variation 

models, the Markov model incorporates the 
channel’s probabilistic inertia, providing a 
better approximation of realistic behavior in 
5G Standalone networks.

Table 3 shows the state transition matrix. Thus, 
three states are used in the simulation: Good, 
Average, and Bad, each of which is characterized by 
fixed parameters of latency, jitter, loss probability, 
and power consumption. For example, in the Good 
state, the latency is ~5 ms, the loss probability 
is 3%, and the jitter is 0.5 ms. In the Bad state, these 
parameters increase according to the worse quality 
of the channel. This division provides sufficient 
variability to assess the impact of radio conditions 
on QoS parameters [11].

Table 3
Transition Probabilities Between Radio Channel 

States in the Markov Model
Current 

state Good Average Bad

Good 0.80 0.15 0.05
Average 0.30 0.50 0.20
Bad 0.10 0.30 0.60

This matrix is constructed to reflect a high 
probability of maintaining the current state with a 
simultaneous non-zero probability of transitioning to 
an adjacent state. This way, the simulation takes into 
account both the short-term stability of transmission 
conditions and possible sudden degradations or 
improvements, for example, when the user changes 
position, moves between cells, or encounters 
interference. The next state is selected at each time 
point t using a multivariate binomial distribution 
(multinomial sampling) implemented in MATLAB 
using the mnrnd function (Fig. 6). This guarantees 
that the actual transitions correspond to the specified 
matrix and allows creating realistic patterns of radio 
channel behavior.

The simulation also accounts for the terminal’s 
power consumption, which varies depending on 
the channel state: poorer transmission conditions 
require higher power levels to maintain connectivity. 

 
  

Fig. 5. Mixing matrix for predicting the type 
of modulation (16-QAM, 64-QAM, 256-QAM). 

The predominant prediction of the 256-QAM class 
is observed, which is compensated by heuristic 

constraints in the adaptive scheduler

Fig. 6. Implementation of the selection of the next channel state based on probabilities  
from the transition matrix using the mnrnd() function in MATLAB
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For  each of the three states (Good, Average, Bad), 
the corresponding power consumption values are 
set (0.5, 1.0, and 1.5 W, respectively). These values 
were selected based on analytical models and 
publications that indicate the typical range of power 
consumption of user equipment (UE) in VoNR 
mode – usually in the range of 0.5–1.5 W, depending 
on signal strength, modulation, and transmitter 
activity. To summarize, the model allows not only 
to analyze QoS indicators, but also to evaluate 
the power efficiency of different schedulers in the 
dynamics [12].

Simulation of changes in channel states in 
the time dimension allows tracking not only 
instantaneous QoS values, but also cumulative 
effects such as accumulated latency, loss variability, 
or power consumption, which are critical when 
serving voice traffic with strict requirements for 
connection stability [13]. Thus, the stochastic 
model of channel states is the basic element of the 
simulation environment that the adaptive scheduler 
relies on when making decisions.

Measurable Quality of Service (QoS) metrics.
The simulation model evaluates all key QoS 

metrics that are critical for the operation of voice 
services in 5th generation networks. The indicators 
are calculated in the time dimension with a fixed 
interval of 1 second. This approach allows tracking 
the change of QoS indicators in dynamics and 
comparing the effectiveness of different schedulers 
in realistic conditions. Fig. 7 shows the change in 
the integral MOS (Mean Opinion Score), which 
assesses the subjective quality of a voice connection 

based on latency, loss, and jitter. All schedulers 
demonstrate a waveform that corresponds to the 
sinusoidal nature of SNR changes in the simulation. 
The most pronounced fluctuations are observed 
for Round Robin and Proportional Fairness, which 
do not have built-in mechanisms for smoothing 
or taking into account historical QoS indicators. 
The Adaptive Scheduler, although it demonstrates a 
similar fluctuation rhythm, provides a higher MOS 
level almost throughout the entire interval. This 
indicates that even when conditions are variable, 
it provides a more effective response to channel 
degradation. The reason for the sinusoidality is 
that SNR(t) itself has a wave nature, and the ML 
model does not work on the basis of perfectly 
inert smoothing, but with a delay of one or two 
steps – due to the aggregation of QoS metrics. 
In other words, adaptation does not stop the 
oscillations completely, but reduces their amplitude 
and improves the overall quality level.

Latency is one of the most critical parameters 
for voice traffic. The graph shows that Round Robin 
and Proportional Fairness demonstrate a relatively 
stable but high average latency (~9–10 ms), which 
almost does not change in response to channel 
degradation (Fig. 8). In the case of Round Robin, 
this is the result of a complete lack of adaptation, 
and in PF, it  is a consequence of limited sensitivity 
to QoS [15]. The adaptive scheduler, on the contrary, 
responds to changes in the channel state. Its graph 
shows lower latency values in high SNR conditions, 
but also fluctuates with the same frequency as 
SNR(t). This indicates two things:

 
  

Fig. 7. MOS dynamics over time
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1) The scheduler changes modulation and 
transmission parameters in response to signal phases.

2) Latency fluctuations are not a sign of 
instability, but the result of active adaptation to 
changing radio conditions, which provides local 
minima when the channel improves.

Thus, even in the presence of a wave structure, 
the adaptive scheduler demonstrates higher 
efficiency and flexibility, allowing to avoid delay in 
critical phases.

Packet loss is a key metric for voice services, 
especially in the context of 5G SA, where the 

lack of real-time HARQ compensation means 
that losses directly affect voice quality [16]. 
Fig.  9  shows that Round Robin demonstrates 
regular loss peaks synchronized with a decrease in 
SNR – which is fully consistent with the absence 
of any adaptation mechanism. Proportional 
Fairness partially smooths out these spikes by 
better managing resource allocation, but it also 
does not take active action when the channel 
quality decreases.

The adaptive scheduler demonstrates a much 
lower level of packet loss throughout the entire 

 
  

 
  

Fig. 8. Average latency

Fig. 9. Dynamics of packet loss (%)
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simulation period. This is explained by its ability 
to change the modulation and MCS parameters 
to less aggressive ones in a timely manner as soon 
as a tendency to degrade the quality of service is 
detected  [17]. Although the model does not always 
manage to completely avoid peak losses – in 
particular, due to the limited accuracy of machine 
forecasting and the latency caused by smoothing 
historical data – the adaptive scheduler effectively 
reduces the amplitude of loss fluctuations. The 
periodic structure of the graph is preserved in this 
case as well, due to the sinusoidal nature of the input 
SNR, but the oscillation pattern for Adaptive has a 
much lower amplitude. This indicates not passive 
imitation of radio conditions, but active adaptation 
to their changes in real time using both current and 
historical QoS metrics.

Jitter is another critical QoS metric for VoNR, as 
instability in packet delivery time causes noticeable 
audio distortion [2]. Fig. 10 shows that jitter in 
basic schedulers (especially in PF) is periodic in 
nature with an amplitude correlated to the low 
SNR phases. These schedulers fail to mitigate jitter 
fluctuations because they do not account for the QoS 
implications of modulation changes.

The adaptive scheduler demonstrates much 
better behavior: although waviness is present (due 
to the nature of SNR(t)), the jitter amplitude is much 
smaller and the transient phases are less pronounced. 
This indicates:

–	 less aggressive modulation selection under 
unstable QoS conditions;

–	 successful response to short-term degradation 
by taking into account previous values (latency, loss, 
jitter);

–	 adjusting transmission without drastic 
changes.

Reducing jitter fluctuations has a positive effect 
on the overall MOS, which is consistent with the 
previous analysis (Fig. 7).

Fig. 11 shows the change in power consumption 
over time for the three implemented schedulers. 
As can be seen from the graph, the basic Round 
Robin and Proportional Fairness algorithms do not 
have any mechanisms for dynamically reducing 
power consumption – they generate consistently 
higher values regardless of changes in radio channel 
conditions [2]. Their power profile remains at around 
0.84–0.86 W with noticeable peaks. In contrast, 
the adaptive scheduler implements a heuristic to 
reduce power consumption in favorable conditions, 
in particular when combining high SNR and using 
highly efficient modulation (256-QAM). This 
reduces the transmit power at the user equipment 
(UE) during favorable radio conditions without 
sacrificing QoS. As a result, the average power 
consumption of Adaptive during the simulation is 
the lowest among all implemented schedulers (in the 
range of 0.80–0.83 W), and the nature of its change 
is more smooth.

Thus, Adaptive demonstrates not only higher 
quality of service, but also power efficiency, which 
is especially important for user devices with limited 
power resources.

 
  

Fig. 10. Jitter
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 Fig. 11. Power consumption of 5G voice services over time depending on the scheduler

Conclusions. This paper presents a simulation 
study of an adaptive voice service scheduler in a 
5G SA network that combines machine learning 
techniques with dynamic QoS optimization. The 
proposed architecture integrates ML-prediction 
of appropriate modulation based on current and 
historical QoS metrics, and implements heuristic 
rules for transmission adaptation and power 
control. The MATLAB simulations enabled a 
comparative evaluation of three schedulers (Round 
Robin, Proportional Fairness, and Adaptive) in 
a dynamic radio environment modeled using a 
Markov-based approach. The results demonstrate 
the advantages of the adaptive design in reducing 

latency, jitter, and packet loss, improving the 
Mean Opinion Score (MOS), and lowering 
power consumption under favorable transmission 
conditions.

Thus, integrating the ML model into the radio 
resource management process enhances the 
flexibility and adaptability of the VoNR system in 
5G Standalone networks, representing a promising 
direction for further research and practical 
deployment. Future work may extend this approach 
by incorporating more advanced forecasting models, 
supporting multi-user scenarios, and enabling 
implementation on software-defined radio (SDR) 
platforms.
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Ветошко І.П., Кравчук С.О. ІНТЕГРАЦІЯ ПРОГНОЗУВАННЯ НА ОСНОВІ МАШИННОГО 
НАВЧАННЯ ТА ДИНАМІЧНОЇ ОПТИМІЗАЦІЇ QOS В АДАПТИВНЕ ПЛАНУВАННЯ VONR  
У МЕРЕЖІ 5G STANDALONE: СИМУЛЯЦІЙНИЙ ПІДХІД

Стрімкий розвиток мереж п’ятого покоління у варіанті Standalone (5G SA) висуває нові вимоги 
до реалізації голосових сервісів, зокрема Voice over New Radio (VoNR), які є критично залежними від 
стабільних показників якості обслуговування (QoS). Традиційні алгоритми планування радіоресурсів, 
такі як Round Robin та Proportional Fairness, базуються переважно на миттєвих характеристиках 
каналу (SNR, CQI), не враховуючи історичні метрики якості, такі як джитер, затримка або втрати 
пакетів, що призводить до нестабільної роботи голосових сервісів у змінному радіосередовищі. 
Особливо це актуально для 5G SA, де немає залежності від LTE-інфраструктури, і вся відповідальність 
за забезпечення QoS покладається на нову архітектуру.

У статті запропоновано симуляційний підхід до побудови адаптивного планувальника для VoNR, 
який поєднує прогнозування параметрів модуляції за допомогою алгоритмів машинного навчання з 
динамічною оптимізацією MCS, QCI та енергоспоживання. На основі моделі ансамблю дерев рішень 
здійснюється оцінка оптимальної модуляції залежно від поточного значення SNR та агрегованих 
QoS‑показників попередніх інтервалів. У симуляційній архітектурі, реалізованій у MATLAB, 
передбачено моделювання змін радіоканалу за допомогою ланцюгів Маркова з трьома дискретними 
станами (Good, Average, Bad), що дозволяє відтворити реалістичні сценарії функціонування мобільної 
мережі. Адаптивний планувальник інтегрує декілька рівнів прийняття рішень: прогноз ML-моделі, 
евристичну корекцію у сприятливих радіоумовах та динамічне керування класами обслуговування 
(QCI), що забезпечує узгодження параметрів передачі з поточними та прогнозованими умовами 
каналу. Також враховується енергоспоживання як повноцінна QoS-метрика, що дозволяє знижувати 
навантаження на користувацьке обладнання при високих рівнях сигналу. Проведено порівняльний 
аналіз трьох планувальників (Round Robin, Proportional Fairness, Adaptive) за ключовими показниками: 
затримка, джитер, втрати пакетів, енергоспоживання, пропускна здатність та MOS.

Результати дослідження підтверджують, що адаптивний ML-планувальник демонструє 
істотно кращі показники якості голосового з’єднання, особливо в умовах нестабільного радіоканалу. 
Запропонований підхід дозволяє мінімізувати втрати та затримки, стабілізувати MOS та підвищити 
енергоефективність системи без зниження якості сервісу. Таким чином, інтеграція машинного навчання 
в контур прийняття рішень для VoNR у 5G SA є перспективним напрямом, що може бути розширений 
шляхом реалізації мультикористувацьких сценаріїв, складніших ML-моделей та практичної апробації 
в умовах реальної мережевої інфраструктури.

Ключові слова: VoNR, 5G Standalone, QoS, адаптивне планування, машинне навчання, модуляція, 
SNR, CQI, QCI, MCS, Round Robin, Proportional Fairness, Adaptive, ML-планувальник, симуляційне 
моделювання, MATLAB, ланцюги Маркова, MOS, енергоспоживання, jitter, затримка, втрати пакетів.


