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INTEGRATION OF MACHINE LEARNING-BASED PREDICTION
AND DYNAMIC QOS OPTIMIZATION INTO ADAPTIVE VONR
SCHEDULING IN 5G STANDALONE NETWORKS:

A SIMULATION-BASED APPROACH

The rapid development of fifth-generation networks in the Standalone (5G SA) variant puts forward new
requirements for the implementation of voice services, in particular Voice over New Radio (VONR), which
are critically dependent on stable quality of service (QoS) indicators. Traditional radio resource scheduling
algorithms, such as Round Robin and Proportional Fairness, are based mainly on instantaneous channel
characteristics (SNR, CQI), without taking into account historical quality metrics such as jitter, delay, or packet
loss, which leads to unstable operation of voice services in a variable radio environment. This is especially
relevant for 5G SA, where there is no dependency on LTE infrastructure and all responsibility for QoS is placed
on the new architecture.

The paper proposes a simulation-based approach to building an adaptive scheduler for VONR that combines
the prediction of modulation parameters using machine learning algorithms with dynamic optimization of MCS,
OCI, and power consumption. Based on a decision tree ensemble model, the optimal modulation is estimated
based on the current SNR value and the aggregated QoS performance of previous intervals. The simulation
architecture implemented in MATLAB provides for modeling radio channel changes using Markov chains with
three discrete states (Good, Average, Bad), which allows to reproduce realistic scenarios of mobile network
operation. The adaptive scheduler integrates several levels of decision-making: ML model forecast, heuristic
correction in favorable radio conditions, and dynamic class of service (QCI) control, which ensures that
transmission parameters are matched to current and predicted channel conditions. The power consumption is
also taken into account as a full-fledged QoS metric, which reduces the load on user equipment at high signal
levels. A comparative analysis of three schedulers (Round Robin, Proportional Fairness, Adaptive) is carried
out according to the key indicators: delay, jitter, packet loss, power consumption, throughput, and MOS.

The results of the study confirm that the adaptive ML scheduler demonstrates significantly better voice
connection quality, especially in unstable radio channel conditions. The proposed approach minimizes losses
and delays, stabilizes the MOS, and improves the power efficiency of the system without compromising the
quality of service. Thus, the integration of machine learning into the decision-making loop for VoNR in 5G SA
is a promising area that can be expanded by implementing multi-user scenarios, more complex ML models, and
practical testing in real network infrastructure.

Key words: VoNR, 5G Standalone, QoS, adaptive scheduling, machine learning, modulation, SNR, CQI,
OCI, MCS, Round Robin, Proportional Fairness, Adaptive, ML scheduler, simulation modeling, MATLAB,
Markov chains, MOS, power consumption, jitter, delay, packet loss.

Formulation of the problem. The appearance environment, ensuring a stable quality of service

of the 5G Standalone (SA) architecture has opened
up opportunities for the full implementation of
new types of services, among which VoNR (Voice
over New Radio) connections play a key role. As
opposed to transitional solutions, such as VOLTE or
EPS fallback, the implementation of voice services
in a fully independent 5G network requires solving
a number of new challenges, including dynamic
management of radio resources in a variable channel
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(QoS), and optimizing latency, loss, and power
consumption.

In traditional scheduling schemes, such as Round
Robin or Proportional Fairness, decisions about
modulation parameters or class of service (QCI)
are made primarily based on instantaneous channel
characteristics, with little regard for historical trends
or service context. This limits the system’s ability to
respond effectively to the dynamics of the network
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environment, which is especially critical for voice
connections that are sensitive to jitter, loss, and
latency. In 5G SA-type networks, these limitations
become even more critical, as the system must
independently provide a full service stack without
relying on LTE infrastructure. In addition, promising
approaches to resource management involve the
integration of intelligent mechanisms, such as
machine learning, but their real-time application
to voice traffic is still not well studied. This creates
the necessity to develop adaptive schedulers capable
of predicting changes in radio conditions and
QoS parameters, changing modulation and MCS
in accordance with the foreseen conditions, and
reducing power consumption without compromising
service quality. Solving these problems is a key step
towards stable and efficient VONR implementation in
real 5G Standalone networks.

Analysis of recent research and publications.
Ensuring quality of service (QoS) for voice
services in fifth-generation (5G) mobile networks,
in particular in the Standalone architecture, is
the subject of active research in the scientific
community. Particular attention is paid to the
challenges associated with radio channel instability,
including changes in signal-to-noise ratio (SNR), the
impact of latency, jitter, packet loss, and the need to
adapt modulation in real time. Works [1, 5] consider
the importance of a guaranteed level of QoS for
voice connections in VONR networks and justify the
necessity of adaptive radio resource management.
Researchers in [7, 8] draw attention to the potential
of machine learning in managing service parameters,
in particular, the ability to predict modulation
and CQI to improve the resilience of voice traffic to
channel changes. Paper [13] proposes an ML-based
scheduling approach that demonstrates the potential
to reduce delays, but its adaptability is limited by the
lack of integration with quality of service (QCI) and
power management. In [3, 14], an overview of the
QoS subsystem in the 5G architecture is provided,
including QCI, MCS, CQI, and resource assignment
mechanisms. At the same time, these works focus
mainly on stationary traffic or lack the time aspect of
radio channel changes, which limits the relevance of
the approaches to real-world scenarios.

Some studies [9, 11] cover radio channel
modeling using stochastic models, in particular
Markov chains, but they are rarely combined
with intelligent schedulers or do not cover the
full set of QoS metrics critical for VoNR. Some
publications [2, 12] offer separate heuristics for
changing modulation when SNR changes, but

without reference to the historical behavior of
service parameters or machine learning.

A general review of published works leads to
the conclusion that existing studies do not offer a
comprehensive model that simultaneously takes
into account QoS dynamics, modulation prediction,
MCS and QCI adaptation, power consumption, and
stochastic channel variability. This integration is the
subject of this paper.

The purpose of this study is to investigate
the possibilities of integrating predictive machine
learning models into the process of adaptive
radio resource planning for voice services in 5G
Standalone networks. The main focus is on
modeling and evaluating the effectiveness of an
intelligent scheduler that changes modulation,
MCS, QCI, and power consumption in accordance
with dynamic radio conditions and quality of
service (QoS) parameters. The work is aimed at
building a full-fledged simulation model using
stochastic approaches to radio channel modeling
and implementing an ML module as an element of
decision-making. The study involves a comparative
analysis of traditional and adaptive schedulers to
determine their ability to provide a stable voice
connection under variable SNR conditions. This
approach allows us to identify the advantages
of adaptive architecture, reduce terminal power
consumption, and improve user experience. In
addition, the study provides a basis for further
developments in the area of implementing intelligent
schedulers in real telecommunications environments.

Summary of the main research material.
In modern fifth-generation (5G) mobile networks,
in particular in the Standalone (SA) variant,
the provision of voice services via Voice over
New Radio (VoNR) technology is a priority area
of development for both operators and network
equipment manufacturers. The main challenge of
implementing VoNR is to ensure a guaranteed level
of quality of service (QoS) in a changing radio
channel, which is especially typical for mobile
scenarios with dynamically changing signal-to-noise
ratio (SNR), interference, signal fading and other
factors inherent in the frequency bands in which NR
operates. Traditional approaches to radio resource
allocation in mobile communications systems are
usually focused on fixed Channel Quality Indicator
(CQI) thresholds, which are directly related to
the choice of Modulation and Coding Scheme
(MCS). In such models, which are used in standard
schedulers, the level of service for voice traffic is
determined purely by the current channel state,
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without taking into account the historical behaviour
of QoS parameters such as latency, jitter, packet loss,
or power consumption. This creates significant risks
for voice quality, as short-term channel degradations
can lead to excessive degradation of end-user
perceived parameters, such as MOS (Mean Opinion
Score). In the case of voice services, such instability
leads to signal distortion, dialogue breaks, lag, and
other undesirable effects [1]. In addition, standard
scheduling schemes are not optimised for power
consumption, which is a critical factor in mobile
terminals and IoT devices that may also use voice
services in 5G.

In response to these challenges, this study
modelled and implemented a new type of
scheduler that dynamically adapts the transmission
parameters of voice traffic depending on both
instantaneous and aggregated QoS characteristics.
The approach is based on the use of machine
learning to predict the optimal modulation based
on a combination of factors, and combining this
prediction with heuristic logic that takes into
account the physical parameters of the radio
channel, service history, and current SNR level.
Additionally, the MCS and QCI adaptation system
is implemented, which allows not only to select
the optimal modulation, but also to ensure the
appropriate quality of service in accordance with
the service category. In order to reproduce realistic
scenarios of the adaptive scheduler, a full-fledged
MATLAB simulation model was built, including
the time generation of radio conditions, the use
of a Markov model for the transition between
radio channel states (Good, Average, Bad), the
calculation of the full range of QoS metrics and
the accounting of power consumption at each
moment. This approach allows for comparisons
between scheduling algorithms with simple
resource allocation without QoS (Round Robin),
QoS-oriented scheduling algorithms (Proportional
Fairness), and the new ML-adaptive approach
under the same network environment (Adaptive).

Thus, the proposed problem statement provides
for a transition from static and isolated modulation
adaptation mechanisms to a comprehensive and
integrated approach, in which the decision to change
transmission parameters is based on a multifactorial
analysis of the QoS history, the current channel
state, and the forecast model. A special feature of
the approach is the inclusion of power consumption
as a QoS indicator, which significantly extends
the application scope of the scheduler in energy-
sensitive scenarios.
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Despite significant progress in the
implementation of voice services in fifth-generation
mobile networks, in particular, based on the VoNR
architecture, there is still no single effective
approach to managing radio interface resources
that would ensure stable voice quality in a variable
radio channel. Most implemented systems are
based on fixed or linear-adaptive algorithms that
rely exclusively on instantaneous CQI or SNR
values. This ignores time dependencies, cumulative
dynamics of QoS parameters, as well as factors
associated with changes in the network environment,
such as latency instability, increasing losses or
accumulated jitter.

In addition, modern schedulers usually do not
take into account the historical behaviour of traffic
and are unable to identify situations where the
quality of service deteriorates gradually rather than
instantly. Such scenarios are especially critical for
voice services. The user’s perceived quality is not
a linear function of just one parameter. Instead, it
is formed as an integral effect of delays, losses,
and jitter accumulated over several seconds. This
necessitates the creation of a planning mechanism
that is capable of multidimensional channel
state estimation and adaptation of the relevant
transmission parameters based on a combination of
instantaneous and average QoS values.

An extra problem that needs to be solved is
the lack of the ability of the scheduler to perform
a coordinated adaptation of several parameters at
once — modulation, coding scheme (MCS), class
of service (QCI), and terminal power consumption
mode — based on a holistic predictive analysis.
In most practical implementations, there is
fragmentation: for example, adaptation is performed
only for MCS, while the choice of QCI or power
mode remains static, or vice versa — the type of
service is fixedly linked to the class of service without
taking into account the actual state of the network.
This limits the effectiveness of such solutions in real
time. From a technical point of view, an important
component of the problem is the lack of models that
simultaneously take into account the variability of
the radio channel over time, the dependence between
successive QoS measurements, the stochastic nature
of losses and latency, and the nonlinear dependence
of MOS on input factors. Creating a simulation
environment that reproduces such characteristics is a
difficult but necessary condition for reliable testing of
any next-generation scheduler. Thus, the study aims
to address the identified problems by building an
integrated model that allows:
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— to combine the prediction of service
parameters using machine learning with classical
resource planning schemes;

— to take into account the time dynamics and
historical values of QoS metrics (latency, jitter,
losses) when making decisions on the choice of
modulation and coding scheme (MCS);

— to perform automated selection of class of
service (QCI) based on predicted radio conditions
and service requirements;

— to dynamically adjust the power consumption
of the terminal in accordance with the channel
conditions and the selected modulation, which
minimises power consumption without degradation
of voice quality;

— to ensure the maintenance of a high average
voice quality score (MOS) by adapting key
transmission parameters in real time;

— to simulate smooth changes in channel
conditions using a stochastic model of transitions
between states (Markov chain), which approximates
the modelling conditions to real-world scenarios.

Elements of scientific novelty.

The architecture for modelling and adaptive
scheduling of voice services in a 5G SA network
proposed in this study forms a number of significant
scientific and technical innovations that distinguish
it from existing approaches. The main elements
of scientific novelty are both the simulation
architecture itself and the introduction of innovative
data-driven decision-making mechanisms. First of
all, an original model of an adaptive resource
scheduler was developed that combines analytical
mechanisms for determining modulation with
predictive algorithms based on machine learning
methods. The peculiarity of the implementation
is that the model takes into account not only the
current SNR value but also the aggregated values
of QoS metrics for previous periods of time when
making decisions. This allows to take into account
the inertia in the behaviour of the network channel
and identify trends of deterioration or improvement
of service that are not available for classical instant
schedulers.

Another key contribution is the integration of
modulation type prediction (16-QAM, 64-QAM,
256-QAM) using an ML model based on four
parameters: SNR, Latency, Jitter and Packet Loss.
The use of an ensemble of models based on a
decision tree allowed us to achieve high accuracy
while maintaining the interpretability of decisions.
In addition, the adaptive scheduler implements the
logic of heuristic correction of ML-model solutions

based on SNR thresholds, which avoids unjustified
modulation reductions in  favourable radio
conditions.

For the first time, the dynamic interdependence
between the predicted modulation, the chosen
coding scheme (MCS) and the class of service
(QCI) is implemented. In classical implementations,
such parameters are fixed or statically set based
on the traffic profile, while in the proposed
model it changes according to the predicted
channel conditions. Thus, the scheduler is able
to automatically lower the priority of service in
unfavourable conditions, or, conversely, increase
the class of service when the QoS improves, which
allows for more efficient use of resources and
increased stability of voice traffic service.

It is worth noting the extension of the standard
QoS model by including power consumption as
a full-fledged metric for voice traffic. The model
reduces power consumption at high SNR values and
selects efficient modulation, which is relevant both
for reducing the load on terminals and improving the
efficiency of the network infrastructure as a whole.

Another element of scientific novelty is the
construction of a time simulation using a Markov
chain to model the smooth transition between the
three states of the radio channel (Good, Average,
Bad). Such a model allows reproducing signal
quality fluctuations over time with greater accuracy
than using independent Gaussian noise or fixed
scenarios. This, in turn, ensures higher simulation
reliability and allows us to evaluate the behavior of
schedulers in realistic variable channel conditions.
In addition, a new weighting formula for calculating
MOS was proposed that takes into account the
influence of three key factors — latency, loss, and
jitter — with experimentally validated weighting
factors. This approach makes it possible to simulate
not only the technical efficiency of transmission, but
also the subjective quality of voice perception by the
user.

Overall, this study has created a holistic
simulation platform for testing adaptive voice
service scheduling algorithms in 5G SA that
combines ML methods, simulation modeling, and
engineering principles of modulation adaptation,
providing a high degree of reliability and practical
value of the results.

Simulation architecture in MATLAB.

To reproduce the behavior of an adaptive voice
packet transmission scheduler in a 5G SA network,
taking into account radio channel dynamics,
variability of QoS metrics, and the impact of
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machine learning, a full-fledged simulation model
was implemented in MATLAB. The model structure
includes several interconnected components: a
dynamic SNR(t) generator, a stochastic model
of radio channel states, a transmission planning
subsystem with options for implementing various
algorithms (Round Robin, Proportional Fairness,
Adaptive), a QoS evaluation module, and a
mechanism for integrating with the ML model [2].
The simulation takes place in the time dimension
with a fixed step, which ensures that the input
parameters change at each moment of time. The
presented implementation uses a simulation horizon
of 100 seconds with a sampling interval of 1 second
(Fig. 1). For each moment of time t, a signal-to-
noise ratio (SNR) value is generated that models the
variability of radio conditions in a real environment.
For this purpose, a combined model is used, which
includes a sinusoidal component (simulating
periodic changes in conditions due to mobility)
and additive Gaussian noise, which models random
disturbances. Additionally, SNR values are limited
to a physically acceptable range (5-35 dB), which
prevents the generation of unrealistic extremes.
After generating the SNR(t) value, each of the
schedulers performs the corresponding voice traffic
transmission scheduling procedure. In the case of
classical approaches (Round Robin, Proportional
Fairness), the algorithm uses fixed thresholds to
determine the modulation and MCS, depending
on the CQI, which is derived from the SNR value
using a piecewise linear relationship. In the case
of an adaptive scheduler, on the contrary, the input
vector consists of the current SNR value and the
aggregated values of QoS indicators for the previous
three time intervals (latency, jitter, loss), after which
it goes through a normalization procedure and is
fed to the input of a machine model built on the
basis of an ensemble of decision trees. The output
of the machine model integrated into the adaptive
scheduler is a categorical variable that determines

% lenepauia punamiuworo SHNR(t)
snrBase = 20;

-

% no4atkoenid pieeHe SNR

snriec = snrBase + 5 ¥ sin(2 * pi * timeVec / 58) + normrnd(8, 1, size(timeVec)); %

the appropriate level of modulation in the current
radio service conditions. The decision is based on
four key input parameters: the current SNR value
and the averaged values of latency, jitter, and packet
loss over the last three simulation intervals. This
approach allows taking into account not only the
instantaneous state of the radio channel, but also
the effects of inertial degradation or stabilization
of the quality of service. However, given the
potential errors of ML forecasting in conditions
close to the limit values or when observing non-
standard combinations of parameters, the model
implements a heuristic procedure for adjusting
the output. In particular, in cases where the SNR
level exceeds 22 dB, the predicted modulation
is checked for feasibility in terms of using the
available radio resource. If the predictive model
makes a decision in favor of a lower modulation
(e.g., 16-QAM), which potentially limits the
bandwidth in a high-quality channel, a forced uprate
to 64-QAM is performed. Similarly, when the SNR
is above 26 dB, an automatic transition to 256-QAM
1s allowed, even in the case of an indecisive forecast.
This heuristic allows balancing between the caution
of the ML model and the aggressive use of favorable
conditions, which, in turn, ensures an increase in
spectral efficiency without a significant increase in
losses or a decrease in MOS [2]. The use of heuristic
correction is especially justified in cases of short-
term improvement of transmission conditions, since
machine models that operate on average QoS values
may demonstrate an inertial delay in response,
which requires proactive intervention at the level of
scheduler logic.

For each transmission session in the simulation, a
network state is generated based on a Markov chain
with three states (Good, Average, Bad), each of
which has fixed parameters of latency, jitter, losses,
and power consumption (Fig. 2). The transition
matrix is designed to mimic the inertia of the
channels: a state is highly likely to persist, but there

wyMm + xeuni

Fig. 1. A snippet of the code for generating the dynamic signal SNR(t) in MATLAB. The value is formed
on the basis of the baseline, sinusoidal variation, and normal noise, which together model periodic changes
and random fluctuations in the radio channel

% BM3Ha4eHHA HacTynHoro cTaHy 2a pgonomorow Mapkoecekol mopeni

currentState = find{mnrnd(1l, transitionMatrix(currentState,

));

Fig. 2. A fragment of the implementation of a stochastic transition between network states based on a Markov
chain. For the currentState, the next state is selected according to the corresponding row in the transitionMatrix
by the multivariate binomial distribution method
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are also non-zero chances of transitioning to a
neighboring state (for example, from Good to
Average or vice versa), which corresponds to the
behavior of a mobile user moving through coverage
cells or changing the orientation of the device.

The QoS analysis module calculates the main
metrics for each scheduler: average latency, average
jitter, Packet loss rate, throughput, round trip delay
(RTD), and average power consumption [3]. Based
on these metrics, an integral quality indicator is
calculated — MOS (Mean Opinion Score), which
is modified to meet the requirements for voice
services: the formula takes into account the weighted
impact of latency, loss and jitter, with thresholds that
meet current [ITU-T recommendations.

The simulation results are accumulated in the
data structure for each scheduler separately, which
allows for a full-fledged comparative analysis of
the performance of Round Robin, Proportional
Fairness, and the proposed ML-based adaptive
solution. In the final part of the simulation, a set of
visualizations (graphs) is generated that demonstrate
the dynamics of QoS metrics over time, as well
as the behavior of parameters that directly depend
on the scheduler — modulation, MCS, CQI, QCL
The resulting simulation is suitable for multifactorial
analysis of schedulers’ behavior under various radio
channel conditions. Its structure allows to trace
the impact of scheduling algorithms on key voice
traffic quality indicators, including latency, jitter,
losses, power consumption, and MOS, with high
resolution, and ensures the reliability of conclusions
about the effectiveness of the implemented adaptive
mechanisms.

Description of schedulers.

The simulation model implements three types of
schedulers that differ in their decision-making logic
for selecting modulation, Modulation and Coding
Scheme (MCS), and service quality for voice
traffic [4]. The choice of these three algorithms is
driven by the need to compare the proposed solution
with basic and common strategies used in mobile
communication systems.

The first type — Round Robin — is a basic
scheduler that implements the simple principle of
uniform distribution of radio resources among users
without taking into account any quality of service
parameters. In the implementation of this simulation,
modulation and MCS are set according to fixed
CQI thresholds that directly depend on the current
SNR value. For example, if CQI < 7, 16-QAM is
assigned, if 7 < CQI < 12, 64-QAM is assigned, and
if CQI > 12, 256-QAM is assigned. This scheme

provides technical fairness, but completely
ignores changes in latency, loss, or jitter, making it
unsuitable for QoS-critical scenarios, such as voice
traffic [2].

The second scheduler, Proportional Fairness
(PF), is a QoS-oriented scheduling algorithm that
attempts to balance efficiency and fairness based
on the ratio of current to average user throughput.
Modulation is determined based on CQI, but with a
more flexible consideration of channel conditions.
Although PF does not directly take into account
latency or loss, it responds to the overall radio
channel condition and is able to partially adapt to
unstable conditions. However, its adaptation is not
QoS-directed in the narrow sense — the scheduler
does not adjust transmission parameters to ensure
stable MOS or minimize jitter [5].

The third proposed scheduler, Adaptive,
integrates a machine learning algorithm, heuristic
logic, and a power adaptation mechanism.
Unlike previous solutions, it is based not only on
instantaneous channel parameters but also on the
history of QoS metrics, including average latency,
jitter, and percentage of losses. The input vector
is fed to an ML model that determines the most
appropriate modulation for the current conditions.
Additionally, heuristic rules are implemented to
increase modulation at high SNR regardless of the
ML prediction, ensuring more aggressive resource
utilization in favorable conditions [2].

In addition to modulation adaptation, the
scheduler dynamically selects the appropriate
Modulation and Coding Scheme (MCS) and binds
it to the QoS Class Identifier (QCI) to ensure
compliance with voice traffic service standards
(e.g., QCI =1 or QCI = 5) [6]. The model also
provides a mechanism for reducing latency and
losses by adjusting transmission parameters, which
allows achieving higher MOS values compared to
the baseline schemes. Thus, the proposed adaptive
scheduler implements a multilevel decision-making
strategy: ML-based forecasting, heuristic correction,
dynamic assignment of transmission parameters,
and power consumption optimization. This ensures
flexibility, resistance to unstable channels, and
improved QoS compared to traditional designs.
Table 1 shows the comparative characteristics of the
implemented schedulers.

Fig. 3 shows the change in modulation (16-QAM,
64-QAM, 256-QAM) over time for each of the three
implemented schedulers. The Round Robin scheduler
demonstrates a fixed modulation selection logic
based solely on the current CQI value. As a result,
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Comparative characteristics of the implemented schedulers

Table 1

Scheduler Main control Modulation Reaction to QCI Power consumption
parameter dialing logic QoS metrics adaptation P
Round Robin CQI Fixed thresholds None Static Static
Proportional CQI + . . .
Fairness Throughput ratio Dynamic thresholds None Static Static
Adaptive (ML) SNR + QoS + ML l;lore(;as.t N Ingludes 3 Dynamic Adaptive
euristics previous ones

the graph shows a relatively stable distribution of
modulations, without a flexible response to changes
in transmission conditions. While Proportional
Fairness utilizes CQI and incorporates the ratio
between current and average throughput to enable
partial modulation adaptation, it does not consider
QoS metrics such as latency or loss. By comparison,
the proposed adaptive scheduler performs more
dynamic modulation changes during the simulation.
This is due to the fact that the modulation selection
decision is based not only on SNR, but also on
aggregated QoS metrics and machine model
predictions. In combination with additional heuristic
conditions, the adaptive scheduler is able to switch
to higher modulation schemes in favorable radio
conditions, even if the model predicted a more
conservative value [7].

Thus, the graph clearly demonstrates that
the adaptive design responds more sensitively
to variations in the network environment than

basic algorithms, which is a crucial advantage for
QoS-sensitive traffic such as VoNR.

Machine Learning model
adaptive scheduling.

This study presents a machine learning model
designed to support the development of an adaptive
scheduler that accounts for the current channel
state and QoS parameters by predicting the optimal
modulation level (16-QAM, 64-QAM, or 256-QAM)
under varying network conditions. The model is
built on the basis of a training dataset generated by
preliminary modeling of system behavior in different
radio conditions and QoS parameters. A total of 2000
synthetic examples were collected, each containing
input values: SNR, Latency, Jitter, and Packet Loss.
These parameters act as a feature vector.

The training set contains a total of 2000 examples
evenly distributed among the three main modulation
classes: 16-QAM, 64-QAM, and 256-QAM. Table 2
summarizes the main statistical characteristics of

integration for

256-QAM AMAA AdhdA A A A A AbAA A Ak A A AL A A A A A FYYYYYYY Ak

&
7
5_‘64-QAM- AbAAbbbbhbbbbhAbAdbbbbbhhbbb bbbk & ‘A A Abdhd AAAAAALAMAAAMAAAAAAAALLAGAAAAAAAAAR & Abh AA Ad Abhbbdd
=N
o
=

[MnaHyBanbHUK

Round Robin

A Proportional Fairness
16-QAMF & adaptive A Ahhhhih hbhhhdh Adhhddh ‘hbhk AL A A Adhhk AMAAAAAAAAALA Ahd
0 20 40 60 80 100

Yac (c)

Fig. 3. Modulation change (16-QAM, 64-QAM, 256-QAM) over time for three schedulers
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Table 2
Input Feature Statistics — VONR ML Training Set
Average Ave.:ra.ge Min 25% Median 75% Max
deviation

SNR 19.959 8.766 5.097 12.141 20.221 27.52 34.992
CQI 7.883 4.296 1.0 4.0 8.0 12.0 15.0
MCS 19.127 5.556 10.0 14.0 19.0 24.0 28.0
Latency 9.012 3.087 3.415 6.46 8.926 11.489 14.997
Jitter 1.366 0.583 0.349 0.863 1.358 1.845 2.499
Loss 1.61 0.913 0.078 0.858 1.59 2.34 3.499
Throughput 154.02 53.02 60.02 108.275 153.568 197.578 264.306
MOS 4.04 0.235 3.603 3.847 4.033 4.234 4.5
Power 1.039 0.429 0.3 0.665 1.041 1.399 1.798

the parameters used as input features, including
average, minimum, and maximum values. The data
encompasses a representative range of VoNR
conditions and contains sufficient variability to
enable the training of a machine learning model with
high generalizability.

The target variable is represented as a categorical
class — a type of modulation encoded in the form
of three numerical labels. Before starting training,
the input data were normalized to a single scale
space, which avoids the overwhelming influence
of individual parameters on the training process.
To increase the reliability of the model, the sample was
divided into training (80%) and test (20%) parts using
stratified hold-out. As a basic classifier, an ensemble
model of the Bagged Trees (Bootstrap Aggregation)
type was chosen, which combines several decision
trees into a stable model with high generalizability.
The implementation used 200 trees, each of which
is trained on a random subset of the training data.
The depth of the tree is limited by setting the
MaxNumSplits parameter to prevent overtraining [9].
This choice is due to the model’s suitability for
integration into a simulation environment, where it
demonstrates a sufficient level of classification ability
to predict modulation in a variable radio channel
(Fig. 4). Although the absolute value of accuracy on
the test set is limited, it is sufficient to support real-
time decision-making in combination with heuristic
rules and dynamic QoS context.

Fig. 5 shows the results of testing the model in
the form of a mixing matrix. As can be seen from the
graph, the model demonstrates the largest number
of correct classifications for the 256-QAM class,
but at the same time, there is a systemic bias — the
model tends to assign higher modulation schemes
even when the true value is lower. This is due to the
peculiarities of the training set and the sensitivity
of SNR as a feature. Such behavior is typical for
models relying on aggregated QoS metrics without
access to extended historical data. To address this,
additional heuristic constraints were introduced
during integration into the simulator to promote
decision stability and mitigate potential losses. Thus,
even with imperfect classification accuracy, the
model is effectively used as a preliminary estimator
in the adaptive scheduler loop.

After the training procedure, the model was
saved as a .mat file and integrated into the general
simulator as part of the adaptive scheduler. During
the simulation process, at each step, the adaptive
scheduler generates a vector of input parameters
(SNR, average latency, jitter, and losses for the
previous three time intervals), normalizes it, and
feeds it to the model input. The resulting predicted
modulation value is used as a key parameter
for further selection of MCS, QCI, and power
consumption [10]. To increase the reliability of the
decisions made, as well as to avoid underestimation
of predictions in favorable channel conditions,

% HEBHEHHH MoAeni Ha TpeHyBanbHWX OaHWX

t = templateTree
modulationTree

Splits', 28);

% KOHTpONnk CKNagHoCTi aepee

itcensemble(X train, y train, ...

Fig. 4. Implementation of training a classification model of the Bagged Trees
type in MATLAB using 200 decision trees and a depth limit (MaxNumSplits)
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Fig. 5. Mixing matrix for predicting the type
of modulation (16-QAM, 64-QAM, 256-QAM).
The predominant prediction of the 256-QAM class
is observed, which is compensated by heuristic
constraints in the adaptive scheduler

an additional heuristic correction module is
implemented: at SNR > 22 dB, the system allows
increasing the predicted modulation by one
level, and at SNR > 26 dB — assigning 256-QAM
regardless of the model’s prediction, if it does not
contradict QoS indicators. This approach allows
balancing between the caution of the ML solution
and the efficient use of resources in a high-quality
radio channel. Thus, the implemented module is
not limited to forecasting, but acts as an adaptive
decision-making subsystem integrated into the
radio resource management loop in a variable radio
environment.

Markov model of channel states.

A stochastic model based on Markov chains with
discrete states was used to model changes in the
radio environment in real time. This approach allows
to realistically reproduce the behavior of the radio
channel in conditions of user mobility, changes in
network load, and stochastic fluctuations caused by
interference and multipath signal propagation [11].
In contrast to sinusoidal or static SNR variation

for i = 1:numPackets

% BM3Ha4eHHA HACTYMHOro CTaHy 3a AONOMOrO0
currentState = find(mnrnd(1, transitionMatrix(currer

models, the Markov model incorporates the
channel’s  probabilistic inertia, providing a
better approximation of realistic behavior in

5G Standalone networks.

Table 3 shows the state transition matrix. Thus,
three states are used in the simulation: Good,
Average, and Bad, each of which is characterized by
fixed parameters of latency, jitter, loss probability,
and power consumption. For example, in the Good
state, the latency is ~5 ms, the loss probability
is 3%, and the jitter is 0.5 ms. In the Bad state, these
parameters increase according to the worse quality
of the channel. This division provides sufficient
variability to assess the impact of radio conditions
on QoS parameters [11].

Table 3
Transition Probabilities Between Radio Channel
States in the Markov Model

Current Good Average Bad
state
Good 0.80 0.15 0.05
Average 0.30 0.50 0.20
Bad 0.10 0.30 0.60

This matrix is constructed to reflect a high
probability of maintaining the current state with a
simultaneous non-zero probability of transitioning to
an adjacent state. This way, the simulation takes into
account both the short-term stability of transmission
conditions and possible sudden degradations or
improvements, for example, when the user changes
position, moves between cells, or encounters
interference. The next state is selected at each time
point t using a multivariate binomial distribution
(multinomial sampling) implemented in MATLAB
using the mnrnd function (Fig. 6). This guarantees
that the actual transitions correspond to the specified
matrix and allows creating realistic patterns of radio
channel behavior.

The simulation also accounts for the terminal’s
power consumption, which varies depending on
the channel state: poorer transmission conditions
require higher power levels to maintain connectivity.

currentDelay = max(0, sts ys(currentState) + normrnd(@, statelitter(currentState))); % MnaeHiwi 3aTpumku

currentlitter = abs(normr
currentPower = statePowe

tatelitter(currentState), 0.5) ep

umption(cur
currentRoundTripDelay = currentDelay *

Fig. 6. Implementation of the selection of the next channel state based on probabilities

pun roeoro wns y

from the transition matrix using the mnrnd() function in MATLAB
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For each of the three states (Good, Average, Bad),
the corresponding power consumption values are
set (0.5, 1.0, and 1.5 W, respectively). These values
were selected based on analytical models and
publications that indicate the typical range of power
consumption of user equipment (UE) in VoNR
mode — usually in the range of 0.5-1.5 W, depending
on signal strength, modulation, and transmitter
activity. To summarize, the model allows not only
to analyze QoS indicators, but also to evaluate
the power efficiency of different schedulers in the
dynamics [12].

Simulation of changes in channel states in
the time dimension allows tracking not only
instantaneous QoS values, but also cumulative
effects such as accumulated latency, loss variability,
or power consumption, which are critical when
serving voice traffic with strict requirements for
connection stability [13]. Thus, the stochastic
model of channel states is the basic element of the
simulation environment that the adaptive scheduler
relies on when making decisions.

Measurable Quality of Service (QoS) metrics.

The simulation model evaluates all key QoS
metrics that are critical for the operation of voice
services in 5th generation networks. The indicators
are calculated in the time dimension with a fixed
interval of 1 second. This approach allows tracking
the change of QoS indicators in dynamics and
comparing the effectiveness of different schedulers
in realistic conditions. Fig. 7 shows the change in
the integral MOS (Mean Opinion Score), which
assesses the subjective quality of a voice connection

based on latency, loss, and jitter. All schedulers
demonstrate a waveform that corresponds to the
sinusoidal nature of SNR changes in the simulation.
The most pronounced fluctuations are observed
for Round Robin and Proportional Fairness, which
do not have built-in mechanisms for smoothing
or taking into account historical QoS indicators.
The Adaptive Scheduler, although it demonstrates a
similar fluctuation rhythm, provides a higher MOS
level almost throughout the entire interval. This
indicates that even when conditions are variable,
it provides a more effective response to channel
degradation. The reason for the sinusoidality is
that SNR(t) itself has a wave nature, and the ML
model does not work on the basis of perfectly
inert smoothing, but with a delay of one or two
steps — due to the aggregation of QoS metrics.
In other words, adaptation does not stop the
oscillations completely, but reduces their amplitude
and improves the overall quality level.

Latency is one of the most critical parameters
for voice traffic. The graph shows that Round Robin
and Proportional Fairness demonstrate a relatively
stable but high average latency (~9-10 ms), which
almost does not change in response to channel
degradation (Fig. 8). In the case of Round Robin,
this is the result of a complete lack of adaptation,
and in PF, it is a consequence of limited sensitivity
to QoS [15]. The adaptive scheduler, on the contrary,
responds to changes in the channel state. Its graph
shows lower latency values in high SNR conditions,
but also fluctuates with the same frequency as
SNR(t). This indicates two things:

MnaHysansHUK
Round Robin
— Proportional Fairness
4.4} —— Adaptive
4.3
w
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=
4.2 |
|
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401
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Fig. 7. MOS dynamics over time
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1) The scheduler changes modulation and lack of real-time HARQ compensation means

transmission parameters in response to signal phases.

2) Latency fluctuations are not a sign of
instability, but the result of active adaptation to
changing radio conditions, which provides local
minima when the channel improves.

Thus, even in the presence of a wave structure,
the adaptive scheduler demonstrates higher
efficiency and flexibility, allowing to avoid delay in
critical phases.

Packet loss is a key metric for voice services,
especially in the context of 5G SA, where the

that losses directly affect voice quality [16].
Fig. 9 shows that Round Robin demonstrates
regular loss peaks synchronized with a decrease in
SNR — which is fully consistent with the absence
of any adaptation mechanism. Proportional
Fairness partially smooths out these spikes by
better managing resource allocation, but it also
does not take active action when the channel
quality decreases.

The adaptive scheduler demonstrates a much
lower level of packet loss throughout the entire
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Fig. 9. Dynamics of packet loss (%)
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simulation period. This is explained by its ability
to change the modulation and MCS parameters
to less aggressive ones in a timely manner as soon
as a tendency to degrade the quality of service is
detected [17]. Although the model does not always
manage to completely avoid peak losses — in
particular, due to the limited accuracy of machine
forecasting and the latency caused by smoothing
historical data — the adaptive scheduler effectively
reduces the amplitude of loss fluctuations. The
periodic structure of the graph is preserved in this
case as well, due to the sinusoidal nature of the input
SNR, but the oscillation pattern for Adaptive has a
much lower amplitude. This indicates not passive
imitation of radio conditions, but active adaptation
to their changes in real time using both current and
historical QoS metrics.

Jitter is another critical QoS metric for VONR, as
instability in packet delivery time causes noticeable
audio distortion [2]. Fig. 10 shows that jitter in
basic schedulers (especially in PF) is periodic in
nature with an amplitude correlated to the low
SNR phases. These schedulers fail to mitigate jitter
fluctuations because they do not account for the QoS
implications of modulation changes.

The adaptive scheduler demonstrates much
better behavior: although waviness is present (due
to the nature of SNR(t)), the jitter amplitude is much
smaller and the transient phases are less pronounced.
This indicates:

— less aggressive modulation selection under
unstable QoS conditions;

£
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— successful response to short-term degradation
by taking into account previous values (latency, loss,
jitter);

— adjusting
changes.

Reducing jitter fluctuations has a positive effect
on the overall MOS, which is consistent with the
previous analysis (Fig. 7).

Fig. 11 shows the change in power consumption
over time for the three implemented schedulers.
As can be seen from the graph, the basic Round
Robin and Proportional Fairness algorithms do not
have any mechanisms for dynamically reducing
power consumption — they generate consistently
higher values regardless of changes in radio channel
conditions [2]. Their power profile remains at around
0.84-0.86 W with noticeable peaks. In contrast,
the adaptive scheduler implements a heuristic to
reduce power consumption in favorable conditions,
in particular when combining high SNR and using
highly efficient modulation (256-QAM). This
reduces the transmit power at the user equipment
(UE) during favorable radio conditions without
sacrificing QoS. As a result, the average power
consumption of Adaptive during the simulation is
the lowest among all implemented schedulers (in the
range of 0.80—0.83 W), and the nature of its change
is more smooth.

Thus, Adaptive demonstrates not only higher
quality of service, but also power efficiency, which
is especially important for user devices with limited
power resources.

transmission  without  drastic

1.1p
1.0} MnaHysansHUK
’ Round Robin
—— Proportional Fairmess
0.9} — Adaptive
0 20 40 60 80 100

Yac (c)

Fig. 10. Jitter
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Fig. 11. Power consumption of 5G voice services over time depending on the scheduler

Conclusions. This paper presents a simulation
study of an adaptive voice service scheduler in a
5G SA network that combines machine learning
techniques with dynamic QoS optimization. The
proposed architecture integrates ML-prediction
of appropriate modulation based on current and
historical QoS metrics, and implements heuristic
rules for transmission adaptation and power
control. The MATLAB simulations enabled a
comparative evaluation of three schedulers (Round
Robin, Proportional Fairness, and Adaptive) in
a dynamic radio environment modeled using a
Markov-based approach. The results demonstrate
the advantages of the adaptive design in reducing

latency, jitter, and packet loss, improving the
Mean Opinion Score (MOS), and lowering
power consumption under favorable transmission
conditions.

Thus, integrating the ML model into the radio
resource management process enhances the
flexibility and adaptability of the VoNR system in
5G Standalone networks, representing a promising
direction for further research and practical
deployment. Future work may extend this approach
by incorporating more advanced forecasting models,
supporting multi-user scenarios, and enabling
implementation on software-defined radio (SDR)
platforms.
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Beromko LII., KpaBuyk C.O. IHTETPALISI IPOT'HO3YBAHHS HA OCHOBI MALIMHHOT'O
HABYAHHS TA JUHAMIUHOI OIITUMI3ALII QOS B AJJATITUBHE IIJTAHYBAHHSI VONR
Y MEPEXI 5G STANDALONE: CUM YJISIIMHWAM ITIXIT

Cmpimxuti po3eumox mepedic n’samoeo noxoninus y eapianmi Standalone (5G SA) sucysae 1ogi gumozu
0o peanizayii conocosux cepsicis, 30kpema Voice over New Radio (VONR), ki € Kpumuuno 3aneicHumu 8io
cmabinbHUx noxkasHukie axocmi oocayeosysanus (QoS). Tpaouyitini areopummu nIAHY8AHHA padiopecypcis,
maxi ax Round Robin ma Proportional Fairness, 6a3ytomvcs nepesadcHo Ha MUMmMeEBUX XAPAKMEPUCTNUKAX
kanany (SNR, CQI), ne gpaxosyiouu icmopuuni Mempuxu sSKoCmi, maki K 0dcumep, 3ampumrka abo empamu
nakemis, wjo Npu3800uUMb 00 HeCMabIILHOL POOOMU 2010CO8UX CePEICi8 Y 3MIHHOMY PAdiocepedosuLlyi.
Ocobnueo ye akmyanvho onst 5G SA, 0e nemae 3anesicnocmi 6i0 LTE-ingppacmpykmypu, i 8¢5t 6i0n08i0aibHiCmb
3a 3ab6e3neuenns QoS NOKIA0AEMbCSL HA HOBY APXIMEKNYpY.

Y cmammi 3anpononosaro cumynayitinuii nioxio 0o no6ydosu adanmusHozo niauyeanvHuxa 0is VoNR,
AKULU NOEOHYE NPOCHO3VBAHHA NAPAMEmMpPIe MOOYIAYIL 3a OONOMO2010 ANOPUMMIE MAUWUHHO20 HABYAHHA 3
Ounamiunoro onmumizayiero MCS, QCI ma enepeocnosxcusanus. Ha ocnosi modeni ancambiro oepes piuieHsb
B0TUCHIOEMbCSL OYIHKA ONMUMAAbHOL MOOYIAYIL 3aNencHo 610 nomounoeo sHavenusi SNR ma aepecosanux
QoS-nokasnuxie nonepeouix inmepeanie. Y cumynayiuniti apximexkmypi, peanizoeaniii y MATLAB,
nepeddaueno Mooeno8an s 3MIiH padioKAHALy 3a 00NOMO2010 anylocie Mapkosa 3 mpboma OUCKpemHUMU
cmanamu (Good, Average, Bad), wo 0o3sonse siomeopumu peanicmuyti cyenapii )yHKyiony8aHHs MOOLIbHOL
Mepedici. AdanmusHull NIAHY8AIbHUK [HMe2pye OeKiIbKA PI6HIE NPULIHAMMA piieHb: npocro3 ML-mooerni,
EBPUCTNUYNY KOPEKYTIO Y CAPUAMIAUGUX padioymMo8ax ma OUHAMiyHe Kepy8aHHs Kiacamu 00CTy208Y8aHHs.
(OCI), wo 3abesneuye y32000ceHHs napamempie nepeoadi 3 NOMOYHUMU MA NPOSHOZ08AHUMU YMOBAMU
Kauany. Taxkosc 8paxo8yemvcs eHepeoCnoNCUBAHHSA AK NOBHOYIHHA (J0S-MempuKa, wo 00380JAE ZHUNCYEAMU
HABAHMANCEHHs HA KOPUCMY8aYybKe O00IAOHAHHA NpU BUCOKUX pigHAX cueHany. IIposedeno nopieHsAnbHUL
ananiz mpvox naanysanvrukie (Round Robin, Proportional Fairness, Adaptive) 3a kirouosumu nOKazHUKamu:
3ampumia, oxcumep, 6mMpamu NAKemis, eHepeoCnOICUBARHS, NPonyckHa 30amuicms ma MOS.

Pesynomamu  docnidoicennsi  niomeepoicyroms, wo adanmusHuil ML-nianysareHux  demorHcmpye
ICMOmMHO Kpauwyi NOKA3HUKU SIKOCTI 2071008020 3 €OHANHS, 0COONUBO 8 YMOBAX HECTNAOITLHO20 PAOIOKAHATY.
3anpononosanuii nioxio 003601s€ MiHIMIzysamu empamu ma sampumku, cmaoinizysamu MOS ma niosuwumu
eHepzoeghekmusHicms cucmemu 6e3 3HudnicenHa AKocmi cepsicy. Takum uuHom, inmezpayis MauuHHO20 HABUAHHS
6 KOHmyp nputinamms piwetrs 01 VoONR y 5G SA € nepcnekmurum Hanpsamom, uwo mMoxce Oymu po3uupeHutl
ULTAXOM peanizayii MyTbmuKopucmy8aybkKux cyenapiis, ckaaouiuux ML-modeneii ma npakmuunoi anpobayii
8 YMOBAX PeanbHOI Mepedcesol IHpacmpykmypu.

Knrouosi cnosa: VoNR, 5G Standalone, QoS, adoanmusne nianyeants, MauiuHHe HAGUAHHS, MOOYVISAYIS,
SNR, CQI, QCI, MCS, Round Robin, Proportional Fairness, Adaptive, ML-nnianysanvrux, cumyisayiire
mooenosanns, MATLAB, nanyroeu Mapxosa, MOS, enepeocnosicusanns, jitter, 3ampuma, 6mpamu naKemie.
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